Thank you!

Your quote has been successfully submitted!

For products requiring additional information, our team will contact you within 1 business day

Failed

There was an error submitting your quote. Please try again.

Rare Earth Ions Doped Lithium Lutetium Fluoride (RE:LLF) Laser Crystal– MSE Supplies LLC

Free Shipping on MSE PRO Online Orders of $500 or More! U.S. Orders Only * Offer Excludes Hazmat Shipments *

Menu
Rare Earth Ions Doped Lithium Lutetium Fluoride (RE: LLF) Laser Crystals - MSE Supplies LLC

Rare Earth Ions Doped Lithium Lutetium Fluoride (RE: LLF) Laser Crystals

SKU: CS0018

To better serve you, we would like to discuss your specific requirement.
Please Contact Us for a quote.

Lithium Lutetium Fluoride (LLF) Laser Crystal has several superior properties than Yttrium Aluminum Garnet (YAG), including low phonon energies, low optical nonlinearities, low laser threshold, longer fluorescence lifetime, etc. It also possess good transparency from the ultraviolet to the infrared region of the spectrum. By doping with different materials, the LLF laser crystal are widely used for various laser and optical applications.

Technical Data

Crystal Structure Tetragonal, a= 5.15 Å, c= 10.47 Å
Density 6.19 g/cm³
Melting Point 850 ℃ 
Thermal Conductivity

5.0 W/(mK) (a)

6.3 W/(mK) (c)

Thermal Expansion Coefficient

13.6 × 10-6 /ºC (a)

10.8 × 10-6 /ºC (c)

Refractive Index @ 1064 nm 1.47
Size up to 30 mm
Thickness up to 50 mm
Orientation a-cut, c-cut

 

Doping Ion Tm Ho Tm, Ho  Yb Pr
Absorption Peak Wavelength  780 nm 1940 nm 780 nm 956 nm 444 nm
Absorption Cross Section 0.7 × 10-20 cm2 0.64 × 10-20 cm2 0.56 × 10-20 cm2 0.544 × 10-21 cm2 N/A
Fluorescence Lifetime 13.6 ms 16 ms 6.9 ms 2.64 ms  42  µs
Laser Wavelength 1911 nm 2060 nm 2053 nm 1019 nm 640 nm
Emission Cross Section 4.0 × 10-21 cm2 1.3 × 10-20 cm2 4.0 × 10-21 cm2 6.74 × 10-21 cm2 2.2 × 10-19 cm2

Reference

1. Xiong, J., H. Y. Peng, C. C. Zhao, Y. Hang, L. H. Zhang, M. Z. He, X. M. He, and G. Z. Chen. Crystal growth, spectroscopic characterization, and laser performance of Tm: LiLuF4 crystal. Laser Physics Letters 6, no. 12 (2009): 868-871.

2. Bensalah, A., Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon. Spectroscopic properties of Yb3+: LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4. Journal of alloys and compounds 380, no. 1-2 (2004): 15-26.