Thank you!

Your quote has been successfully submitted!

For products requiring additional information, our team will contact you within 1 business day

Failed

There was an error submitting your quote. Please try again.

Recombinant Human BNIP3L Protein– MSE Supplies LLC

Free Shipping on MSE PRO Online Orders of $500 or More! U.S. Orders Only * Offer Excludes Hazmat Shipments *

Menu

This product has been added to the cart.

Recombinant Human BNIP3L Protein

SKU: PKSH030825-100

  • $ 76995



Recombinant Human BNIP3L Protein

 

SKU # PKSH030825
Expression Host E.coli

 

Description

Synonyms BNIP3a, NIX
Species Human
Expression Host E.coli
Sequence Ser 2-Lys 187
Accession Q7Z465-1
Calculated Molecular Weight 20.4 kDa
Observed Molecular Weight 36 kDa
Tag None
Bio-activity Not validated for activity
  

 

Properties

Purity > 88 % as determined by reducing SDS-PAGE.
Endotoxin Please contact us for more information.
Storage Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80℃. Reconstituted protein solution can be stored at 4-8℃ for 2-7 days. Aliquots of reconstituted samples are stable at < -20℃ for 3 months.
Shipping This product is provided as lyophilized powder which is shipped with ice packs.
Formulation Lyophilized from sterile 50mM Tris, 150mM NaCl, 1mM DTT, pH 8.0
Normally 5% - 8% trehalose, mannitol and 0.01% Tween 80 are added as protectants before lyophilization.
Please refer to the specific buffer information in the printed manual.
Reconstitution Please refer to the printed manual for detailed information.


Background

The deletion of BNIP3L results in retention of mitochondria during lens fiber cell remodeling, and that deletion of BNIP3L also results in the retention of endoplasmic reticulum and Golgi apparatus. BNIP3L localizes to the endoplasmic reticulum and Golgi apparatus of wild-type newborn mouse lenses and is contained within mitochondria, endoplasmic reticulum and Golgi apparatus isolated from adult mouse liver. As the cells become packed with keratin bundles, Bnip3L expression triggers mitophagy to rid the cells of the last remaining 'living' characteristic, thus completing the march from 'living' to 'dead' within the hair follicle. during retinal development tissue hypoxia triggers HIF1A/HIF-1 stabilization, resulting in increased expression of the mitophagy receptor BNIP3L/NIX. BNIP3L-dependent mitophagy results in a metabolic shift toward glycolysis essential for RGC neurogenesis. BNIP3L could be a potential therapeutic target for ischemic stroke.