Recombinant Human EphA4 Protein (His Tag)(Active)
SKU: PKSH031152-100
Recombinant Human EphA4 Protein (His Tag)(Active)
SKU # | PKSH031152 |
Expression Host | HEK293 Cells |
Description
Synonyms | EK8, EPH-like kinase 8, EPHA4, Ephrin type-A receptor 4, HEK8, SEK, TYRO1, Tyrosine-protein kinase TYRO1, Tyrosine-protein kinase receptor SEK, hEK8 |
Species | Human |
Expression Host | HEK293 Cells |
Sequence | Met 1-Thr 547 |
Accession | NP_031962.2 |
Calculated Molecular Weight | 60.0 kDa |
Observed Molecular Weight | 60-70 kDa |
Tag | C-His |
Bio-activity | Measured by its ability to bind biotinylated Human EphrinA5-his in functional ELISA. |
Properties
Purity | > 96 % as determined by reducing SDS-PAGE. |
Endotoxin | < 1.0 EU per μg of the protein as determined by the LAL method. |
Storage | Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80℃. Reconstituted protein solution can be stored at 4-8℃ for 2-7 days. Aliquots of reconstituted samples are stable at < -20℃ for 3 months. |
Shipping | This product is provided as lyophilized powder which is shipped with ice packs. |
Formulation | Lyophilized from sterile PBS, pH 7.4 Normally 5% - 8% trehalose, mannitol and 0.01% Tween 80 are added as protectants before lyophilization. Please refer to the specific buffer information in the printed manual. |
Reconstitution | Please refer to the printed manual for detailed information. |
Background
EPH receptor A4 (ephrin type-A receptor 4), also known as EphA4, belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family which 16 known receptors (14 found in mammals) are involved: EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHA9, EPHA10, EPHB1, EPHB2, EPHB3, EPHB4, EPHB5, EPHB6. The Eph family of receptor tyrosine kinases (comprising EphA and EphB receptors) has been implicated in synapse formation and the regulation of synaptic function and plasticity6. EphA4 is enriched on dendritic spines of pyramidal neurons in the adult mouse hippocampus, and ephrin-A3 is localized on astrocytic processes that envelop spines. Eph receptor−mediated signaling, which is triggered by ephrins7, probably modifies the properties of synapses during synaptic activation and remodeling. Ephrin receptors are components of cell signalling pathways involved in animal growth and development, forming the largest sub-family of receptor tyrosine kinases (RTKs). The extracellular domain of an EphA4 interacts with ephrin ligands, which may be tethered to neighbouring cells. Ligand-mediated activation of Ephs induce various important downstream effects and Eph receptors have been studied for their potential roles in the development of cancer.