Recombinant Human STK23/MSSK1/SRPK3 Protein (His & GST Tag)
SKU: PKSH030897-50
Recombinant Human STK23/MSSK1/SRPK3 Protein (His & GST Tag)
SKU # | PKSH030897 |
Expression Host | Baculovirus-Insect Cells |
Description
Synonyms | MGC102944, MSSK-1, MSSK1, STK23 |
Species | Human |
Expression Host | Baculovirus-Insect Cells |
Sequence | Met 1-Pro 566 |
Accession | NP_001164231.1 |
Calculated Molecular Weight | 89.7 kDa |
Observed Molecular Weight | 100 kDa |
Tag | N-His-GST |
Bio-activity | Not validated for activity |
Properties
Purity | > 85 % as determined by reducing SDS-PAGE. |
Endotoxin | < 1.0 EU per μg of the protein as determined by the LAL method. |
Storage | Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80℃. Reconstituted protein solution can be stored at 4-8℃ for 2-7 days. Aliquots of reconstituted samples are stable at < -20℃ for 3 months. |
Shipping | This product is provided as lyophilized powder which is shipped with ice packs. |
Formulation | Lyophilized from sterile 20mM Tris, 500mM NaCl, pH 8.0 Normally 5% - 8% trehalose, mannitol and 0.01% Tween 80 are added as protectants before lyophilization. Please refer to the specific buffer information in the printed manual. |
Reconstitution | Please refer to the printed manual for detailed information. |
Background
Serine / threonine-protein kinase SRPK3, also known as Muscle-specific serine kinase 1, Serine/arginine-rich protein-specific kinase 3, SR-protein-specific kinase 3, Serine / threonine-protein kinase 23, MSSK-1, SRPK3 and MSSK1, is a member of the protein kinase superfamily and CMGC Ser / Thr protein kinase family. SRPK3 is a protein kinase belonging to serine/arginine protein kinases (SRPK) family, which phosphorylates serine / arginine repeat-containing proteins, and is controlled by a muscle-specific enhancer directly regulated by MEF2. SRPK3 / MSSK1 contains oneprotein kinase domain. SRPK3 / MSSK1 is exclusively expressed in skeletal and heart muscle. It is required for normal muscle development. Myocyte enhancer factor 2 (MEF2) plays essential roles in transcriptional control of muscle development. Normal muscle growth and homeostasis require MEF2-dependent signaling by SRPK3.