Ampcera® LLZO Powder Nb-Doped Lithium Lanthanum Zirconate Garnet, D50 ~ 5um
SKU: PO0206
Ampcera® LLZO Powder, Nb-doped, Li6.5La3Zr1.5Nb0.5O12, LLZNO, Lithium Lanthanum Zirconate Garnet, 100g, <500 mesh, ~5 um D50
Check publications using our LLZO
- Product Number: PO0206
- Vendor: Ampcera Inc.
- Composition: Li6.5La3Zr1.5Nb0.5O12 (Nb-doped LLZO, LLZNO), Niobium doped Lithium Lanthanum Zirconate Garnet
- Theoretical Density: 5.2 g/cm3
- Particle Size: pass 500 mesh, D50 ~ 5 µm
- Purity: synthesized from 99.9% precursor materials
- Phase: cubic phase, garnet structure
- Calcination temperature: <1000°C
- Bulk Ionic Conductivity: >5 x 10-4 S/cm at room temperature (measured from sintered pellets)
- Product Form: Powder
Shipping and handling: This material is classified as a hazmat and requires special packaging and shipping to comply with regulatory requirements. Please contact us for specific details with shipping and handling.
Applications
Solid state electrolyte material for all solid state lithium ion batteries. Niobium doped LLZO, with nominal composition Li6.5La3Zr1.5Nb0.5O12 (Nb-doped LLZO), is used as a solid electrolyte material for Li-based solid state battery because of its high Lithium ionic conductivity and chemical stability with respect to lithium metal as well as its stability at elevated temperatures. Because of its better electrochemical stability, LLZO is preferred than LLTO as a solid electrolyte material.
*All solid state electrolyte materials sold by MSE Supplies are under the trademark of Ampcera.
- Jeffrey W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, Journal of Power Sources, Volume 195, Issue 15, 1 August 2010, Pages 45544569; http://dx.doi.org/10.1016/j.jpowsour.2010.01.076
- Zhi Deng, Yifei Mo and Shyue Ping Ong, Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries, NPG Asia Materials (2016) 8, e254; doi:10.1038/am.2016.7
- Seungho Yu, Robert D. Schmidt, Regina Garcia-Mendez, Erik Herbert, Nancy J. Dudney, Jeffrey B. Wolfenstine, Jeff Sakamoto, and Donald J. Siegel, Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO), Chem. Mater., 2016, 28 (1), pp 197206. DOI: 10.1021/acs.chemmater.5b03854
- Jiajia Tan and Ashutosh Tiwari, Synthesis of Cubic Phase Li7La3Zr2O12 Electrolyte for Solid-State Lithium-Ion Batteries, Electrochem. Solid-State Lett. 2012 volume 15, issue 3, A37-A39. doi: 10.1149/2.003203esl
Solid electrolytes open doors to solid-state batteries