Recombinant Human ACPL2 Protein (His Tag)
SKU: PKSH031183-100
Recombinant Human ACPL2 Protein (His Tag)
SKU # | PKSH031183 |
Expression Host | HEK293 Cells |
Description
Synonyms | ACPL2, FLJ23751, UNQ370/PRO706 |
Species | Human |
Expression Host | HEK293 Cells |
Sequence | Met 1-Phe 480 |
Accession | NP_689495.1 |
Calculated Molecular Weight | 54.0 kDa |
Observed Molecular Weight | 50 kDa |
Tag | C-His |
Bio-activity | Not validated for activity |
Properties
Purity | > 95 % as determined by reducing SDS-PAGE. |
Endotoxin | < 1.0 EU per μg of the protein as determined by the LAL method. |
Storage | Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80℃. Reconstituted protein solution can be stored at 4-8℃ for 2-7 days. Aliquots of reconstituted samples are stable at < -20℃ for 3 months. |
Shipping | This product is provided as lyophilized powder which is shipped with ice packs. |
Formulation | Lyophilized from sterile PBS, pH 7.4 Normally 5% - 8% trehalose, mannitol and 0.01% Tween 80 are added as protectants before lyophilization. Please refer to the specific buffer information in the printed manual. |
Reconstitution | Please refer to the printed manual for detailed information. |
Background
acid phosphatase-like protein 2, also known as ACPL2, is a secreted protein which belongs to thehistidine acid phosphatase family. A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally, both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence.