Thank you!

Your quote has been successfully submitted!

For products requiring additional information, our team will contact you within 1 business day

Failed

There was an error submitting your quote. Please try again.

Recombinant Human Peroxiredoxin 6/PRDX6 Protein (His Tag)– MSE Supplies LLC

Free Shipping on MSE PRO Online Orders of $500 or More! U.S. Orders Only * Offer Excludes Hazmat Shipments *

Menu

This product has been added to the cart.

Recombinant Human Peroxiredoxin 6/PRDX6 Protein (His Tag)

SKU: PKSH031178-100

  • $ 76995
  • Save $ 8600



Recombinant Human Peroxiredoxin 6/PRDX6 Protein (His Tag)

 

SKU # PKSH031178
Expression Host E.coli

 

Description

Synonyms 1-Cys PRX, 1-Cys Peroxiredoxin, 24 kDa Protein, AOP2, Acidic Calcium-Independent Phospholipase A2, Antioxidant Protein 2, KIAA0106, Liver 2D PAGE Spot 40, NSGPx, Non-Selenium Glutathione Peroxidase, PRDX6, Peroxiredoxin-6, Red Blood Cells Page Spot 12, aiPLA2, p29
Species Human
Expression Host E.coli
Sequence Met 1-Pro 224
Accession P30041
Calculated Molecular Weight 26.5 kDa
Observed Molecular Weight 26.5 kDa
Tag N-His
Bio-activity Not validated for activity
  

 

Properties

Purity > 95 % as determined by reducing SDS-PAGE.
Endotoxin Please contact us for more information.
Storage Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80℃. Reconstituted protein solution can be stored at 4-8℃ for 2-7 days. Aliquots of reconstituted samples are stable at < -20℃ for 3 months.
Shipping This product is provided as lyophilized powder which is shipped with ice packs.
Formulation Lyophilized from sterile PBS, pH 7.4
Normally 5% - 8% trehalose, mannitol and 0.01% Tween 80 are added as protectants before lyophilization.
Please refer to the specific buffer information in the printed manual.
Reconstitution Please refer to the printed manual for detailed information.


Background

acid phosphatase-like protein 2; also known as ACPL2; is a secreted protein which belongs to thehistidine acid phosphatase family. A large-scale effort; termed the Secreted Protein Discovery Initiative (SPDI); was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches; a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally; both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence.