Recombinant Human PARK7/DJ-1 Protein (His Tag)
SKU: PKSH030826-100
Recombinant Human PARK7/DJ-1 Protein (His Tag)
SKU # | PKSH030826 |
Expression Host | E.coli |
Description
Synonyms | DJ-1, DJ1, HEL-S-67p |
Species | Human |
Expression Host | E.coli |
Sequence | Met 1-Asp 189 |
Accession | Q99497-1 |
Calculated Molecular Weight | 21.3 kDa |
Observed Molecular Weight | 25 kDa |
Tag | C-His |
Bio-activity | Not validated for activity |
Properties
Purity | > 95 % as determined by reducing SDS-PAGE. |
Endotoxin | Please contact us for more information. |
Storage | Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80℃. Reconstituted protein solution can be stored at 4-8℃ for 2-7 days. Aliquots of reconstituted samples are stable at < -20℃ for 3 months. |
Shipping | This product is provided as lyophilized powder which is shipped with ice packs. |
Formulation | Lyophilized from sterile 20mM Tris, 150mM NaCl, 3mM DTT, 5% glycerol, pH 8.0 Normally 5% - 8% trehalose, mannitol and 0.01% Tween 80 are added as protectants before lyophilization. Please refer to the specific buffer information in the printed manual. |
Reconstitution | Please refer to the printed manual for detailed information. |
Background
Parkinson's disease locus DJ-1 (PARK7) is a differentially expressed transcript. DJ-1 plays a physiologic role in protection of erythroid cells from oxidant damage, a function unmasked in the context of oxidative stress. PARK7 belongs to the peptidase C56 family of proteins. It acts as a positive regulator of androgen receptor-dependent transcription. It may also function as a redox-sensitive chaperone, as a sensor for oxidative stress, and it apparently protects neurons against oxidative stress and cell death. Mutations in the DJ-1 gene are associated with rare forms of autosomal recessive early-onset Parkinson's disease (PD). DJ-1/p53 interactions contribute to apoptosis resistance in clonal myeloid cells and may serve as a prognostic marker in patients with myelodysplastic syndromes (MDS). DJ-1 regulates redox signaling kinase pathways and acts as a transcriptional regulator of antioxidative gene batteries. Therefore, DJ-1 is an important redox-reactive signaling intermediate controlling oxidative stress after ischemia, upon neuroinflammation, and during age-related neurodegenerative processes. Augmenting DJ-1 activity might provide novel approaches to treating chronic neurodegenerative illnesses such as Parkinson's disease and acute damage such as stroke.